
An overview of scripting languages

Alexander Kanavin
Lappeenranta University of Technology, Finland
Teachers: Barbara Miraftabi and Jan Voracek

1 Dec 2002

Abstract

Over the last few years the interest in scripting languages has dramat-
ically increased. These languages have many important advantages over
traditional programming languages, most notably, they eliminate the need
for compilation, they manage memory automatically and they include
high-level datatypes. In the future these languages are likely to become
the core of most programming projects, because of their power to ’glue’
existing components together into a working application system.

1 Introduction

Over the last few years the scripting programming languages made a giant leap
ahead. About ten years ago they were viewed as an auxillaru tools, not really
suitable for general programming per se. Now they generate a tremendous
amount of interest both in academic circles and in the software industry.

The execution speed and memory sonsumption of scripting languages vs.
the traditional languages is studied in [6]. Article [4] presents a historical back-
ground of the scripting languages. In [1] a practical case of using the scripting
languages in a commercial environment is presented. Finally, [3] presents some
trends for the future.

In this overview I first try to define what scripting languages are. Then a
classification of the languages based on their application ares is presented. After
that, the most popular of scripting languages are presented, and the peculiar
features of each one are highlighted. The paper is concluded with the discussion
on why scripting languages are important, and what their role is going to be in
the future.

2 What are scripting languages?

The boundary between the scripting programming languages and the traditional
ones is somewhat blurry. However, it is possible to highlight a few characteristics
of scripting languages, that, when taken together, could serve as a definition:

• They are interpreted or bytecode-interpreted and never compiled to native
code

1



• The memory handling is done by a garbage collector and not by a pro-
grammer

• They include high-level data types, such as lists, associative arrays and so
on

• The execution environment can be integrated with the program being
written

• The scripting programs (or simply, scripts) can access modules written in
lower-level languages, such as C.

Not every scripting language has the whole set of these features. For example,
shell scripts cannot access C modules. But it’s a scripting language nevertheless.

The main idea behind the scripting languages is their dynamic nature, that
allows to treat data as a program and vice versa.

The list of the scripting languages includes: shell, awk, Perl, TCL, Python,
Java, Lisp and many others.

3 Application areas

The article [4] introduces four main usage areas for scripting languages:

• Command scripting languages

• Application scripting languages

• Markup languages

• Universal scripting languages

3.1 Command scripting languages

Command scripting languages are the oldest class of scripting languages. They
appeared in 1960, when a need for programs and tasks control arised. The most
known language from the first generation of such languages is JCL (Job Control
Language), created for IBM OS/360 operating system.

Modern examples of such languages include shell language, described above,
and also text-processing languages, such as sed and awk. These languages were
one of the first to directly include support for regular expression matching - a
feature that later was included into more general-purpose languages, such as
Perl.

3.2 Application scripting languages

Application scripting languages were developed in 1980s, in the era of personal
computers, when such important applications as spreadsheets and database
clients were introduced, and interactive session in front of the PC became the
norm.

One of the prime examples of these languages is Microsoft-created Visual Ba-
sic language, and especially it’s subset named Visual Basic for Applications, de-
signed explicitly for office applications programming. This language puts heavy

2



Name Year of creation Developers Organization
Pilot 1962 - IBM
JCL 1964 - IBM
RPG 1965 - IBM
MUMPS 1969 Okto Barnett+ Massachusetts General Hospital
sh 1971 Steve Bourne AT&T Bell Labs
Awk 1977 Alfred Aho+ AT&T Bell Labs
csh 1978 - UC Berkeley
Rexx 1979 Michael Qualishow IBM UK Laboratories
AppleScript 1993 - Apple Computer

Table 1: Command Scripting Languages

emphasis on user interface programming and component embedding (such as
VBX, OCX, ActiveX). VBA replaced earlier languages, Word Basic and Excel
Macro Language, as the universal single language for programming Microsoft
Office suite. It influenced such later languages as VBScript (oriented towards
creation of OLE components and for work within a browser), and also LotusS-
cript (Lotus Notes programming).

Javascript language also belongs to this class. It is basically a de-facto
standard for implementations of the client parts of web-programming projects.
Javascript was introduced in Netscape Navigator 2.0 browser. It has a few di-
alects, such as JScript from Microsoft and ECMAScript (ECMA-262 standard).

Name Year of creation Developers Organization
HyperTalk 1986 - Apple Computer
Visual Basic 1990 - Microsoft
JavaScript 1994 - Netscape Communications
CorelScript 1995 - Corel
LotusScript 1995 - Lotus Development
VBScript 1995 - Microsoft
Pnuts 2001 Toyokasu Tomatsu Sun Microsystems

Table 2: Command Scripting Languages

3.3 Markup Languages

Markup languages are a special case in the sense that they are not a real pro-
gramming languages, but rather a set of special command words called ’tags’
used to mark up parts of text documents, that are later used by special pro-
grams called processors, to do all kinds of transformations to the text, such as
displaying it in a browser, or converting it to some other data format. The basic
idea of markup languages is the separation of contents and structure, and also
including formatting commands and interactive objects into the documents.

The first markup language named GML (Generic Markup Language) was
created in 1969 by IBM. In 1986, ISO created a standard called SGML, based
on GML ideas.

3



Perhaps the most known achievements in markup Languages are TeX, HTML
and XML. TeX was created in 1979 by Donald Knuth and was designed for pre-
cise description of how the documents look, no matter how complicated their
structure is. It differs from Postscript created by Adobe in that it is targeted at
users who not necessarily need to know how to program. TeX achieved enormous
popularity in scientific community, where it can fulfil the need for high-quality
rendering of complex formulas (no other language can do that still).

HTML really needs no introduction: it’s the basic language of the world
wide web. HTML is an SGML application in the sense, that the official HTML
standard is defined in terms of SGML. (SGML itself is not a language, but a
meta-language, a language for creation of languages).

XML could be briefly described as ”SGML’s younger brother”. It is basically
a simpler and streamlined version of SGML with an emphasis on transportation
and storage of data, and exchange of data between systems of all kinds. It can
be used for complex data transformations and for an unified approach to storing
hierarchical data, such as components setup and programming. In 2001 HTML
was redefined in terms of XML; this new revision was called XHTML.

Name Year of creation Developers Organization
GML 1969 Charles Goldfarb+ IBM
TeX 1979 Donald Knuth Stanford University
SGML 1986 - ISO
HTML 1991 Tim Berners-Lee CERN
CFML (Cold Fusion) 1995 - Allaire
DHTML 1996 - Microsoft
XML 1997 - W3C
XHTML 2001 - W3C

Table 3: Markup Languages

3.4 Universal scripting languages

The languages that belong to this class are perhaps the most well-known. The
very term ”scripting languages” is accociated with them. Most of these lan-
guages were originally created for the Unix environment. The goals however
were different.

The Perl programming language was made for report generation, which is
even reflected in its name (Practical Extraction and Report Language). It is
commonly said that the primary reason for it’s enormous popularity is the ability
to write simple and efficient CGI scripts for forming dynamic web pages with
this language. Perl was there in the right place at the right time.

The Python language was originally made as a tool for accessing system ser-
vices of the experimental operating system Amoeba. Later it became a universal
object-oriented scripting language. Implementations exist for the Java Virtual
Machine and also for Microsoft Intermediate Language used on Microsoft .NET
platform.

Tcl language was created with the aim of string processing and close integra-
tion with Tk library. Tcl’s mainly used as an application extension language.

4



Unlike Perl and Python, which make it easy to write completely standalone
programs, Tcl relies heavily on C and C++ extension modules.

Most of the rest of the languages belong to the second wave, that appeared
together with web services. The most known of them is the language named
PHP, which combines HTML and traditional programing procedures with loops
and functions and also provides extemely easy database access. We will look at

Name Year of creation Developers Organization
Perl 1986 Larry Wall -
Tcl 1990 John Ousterhaut UC Berkeley
Python 1991 Guido Van Rossum Stichting Mathematisch Centrum
Ruby 1993 Yukihiro Matsumoto -
Euphoria 1993 R. Craig Rapid Deployment Software
Luea 1994 U. Tseles+ PUC-Rio
PHP 1995 Rasmus Lerdordf -
Mawl 1995 D. Ladd+ -
Pike 1996 Frederik Hubinett InformationsVavarna
Curl 2000 Steve Ward+ MIT Lab for Computer Science

Table 4: Universal Sripting Languages

some of these languages closer in the next section.

4 Languages overview

4.1 Shell scripting language

The shell is an interactive command-line interpreter of the Unix operating sys-
tem family. It also includes programming capabilities with all the standard
procedural languages constructs: if-then statements, for and while loops, vari-
ables, functions and so on.

Simple shell programs are very easy and natural to write. As the program
size gets larger however, they tend to become a sort of hodge-podge. Some
parts of the syntax are also quite confusing (the quoting rules for example).
These rules were introduced as an attempt to preserve shell’s main role as an
interactive interpreter.

Shell programs generally rely heavily on running and processing the output
of external programs, such as Unix filters (sort, wc, grep and so on) and text-
processing mini-languages, such as awk and sed.

The major advantage of shell is that almost all Unix variants come with it,
you almost never have to install it. However, shell isn’t really suitable for any
programming tasks, but the simplest ones.

4.2 Perl

Perl was developed by Larry Wall in the late 80s. It is best described as ”shell on
steroids”. It was designed specifically to replace awk and shell as the language
for Unix script programming.

Perl is certainly a much more advanced language than shell: it includes
stronger data types, including dynamic arrays, and a ’hash’ type that allows

5



fast and convinient lookup of value by the name (in a phonebook fashion). Perl
also suppports pattern-driven processing of textual data format; these facilities
are built straight into the language and are not part of the library.

Speaking of the library, Perl includes a complete and well thought out bind-
ing of almost the entire Unix API. Thus it significantly reduces the need for C for
simple tasks that do not require optimizing the memory usage or performance.

Another strong advantage of Perl is that it has a dedicated large community
grown around it. Members of this community wrote hundreds of freely available
modules that allow you to do virtually everything, from building graphical user
interfaces to writing interactive dynamic websites. This collection of modules is
known as CPAN.

Perl however has quite a number of drawbacks: as a language it’s anything
but pretty or elegant. Some parts of it are, quite simply, ugly. The syntax is
generally considered to be one of the less readable, and there’s even an annual
contest to write the most obfuscated Perl program possible.

It is harder to get started in Perl than in shell. Perl also requires extraordi-
nary effort to keep the program design simple and maintain modularity as the
program size grows. Some of the more advanced language features look like an
afterthought, something that was put there on top of existing things.

Like shell, Perl can be found on almost every Unix installation. Perl is also
available and quite well documented on Microsoft platforms.

4.3 Tcl

Tcl (tool control language) is a small language interpreter designed to link with
compiled C libraries, providing scripted control of C code.

Some facilities built on top of Tcl achieved widespread usage and perhaps
even bigger popularity than the language itself. These include Tk toolkit, one
of the most easy to use GUI toolkits that allows for rapid building of buttons,
dialog boxes, menu trees and so on, and also Expect, a language that makes
it easy to script fully interactive programs that were never intended as being
controlled by a script. Tk toolkit is not limited to Tcl; it is often used with Perl
and Python for example.

The main advantage of Tcl is that it is extremely flexible and simple. The
syntax is somewhat weird (no difference between a function call and ’built-in’
operators for example), but quite consistent.

The main drawback of Tcl is that the language has only weak facilities
for namespace control and modularity, and thus makes it difficult to write large
programs. Some of the oddities of syntax are a bit of a headache for newcomers.

Plain Tcl provides access only to a small part of the Unix API (just file han-
dling, process-spawning, and sockets). Tcl extensions exist but are not guaran-
teed to be installed everywhere.

Tcl implementations exist not just for Unix, but also for the Windows family.
Tcl/Tk scripts will run unchanged on any implementation.

4.4 Python

Python is a scripting and prototyping language that can be integrated with C.
Like Tcl, it can both import data from and export data to dynamically loaded
C libraries, and can be called as an embedded scripting language from C. Its

6



syntax is something in between C and the Modula family, but also has the
unusual feature that block structure is actually controlled by indentation (there
is no analogue of explicit begin/end or C curly brackets). This is certainly the
most disputed over feature of the languages, but most people seem to like it,
once they get used to it and consider it a real time-saver.

The Python language is a very clean and elegant design. It gives the program
designers a choice to write in an object-oriented style, the traditional procedural
style or a mix of those. It includes many high-level datatypes similar to those
of Perl, including dynamic lists and hash arrays. It aslo supports a couple of
functional languages features such as lamdas (a small in-place functions that
can be used instead of real ones for the sake of simplicity). Python can use the
Tk toolkit to easily build GUI interfaces.

The standard Python distribution includes client libraries for most of the
important Internet protocols (SMTP, FTP, POP3, IMAP, HTTP) and generator
classes for HTML. This makes Python very suitable for building protocol robots
and network administration scripts. It is also suitable for writing dynamic CGI
webpages and competes successfully with Perl at the high-complexity end of
that application area (Google makes heavy use of Python for example).

Of all the languages in this overview, Python and Java are the only ones
well suited for large and complex projects with many cooperating developers.
Python is however simpler than Java, and is also friendlier to rapid prototyping.
An implementation of Python for the Java Virtual Machine, intended for mixed
use of these two languages, is available; it is called Jython.

As any other scripting language, Python is not as fast as C or C++. However
it is common to rewrite critical parts of the program in C, and glue them together
with Python. Python is not as good as Perl for small projects and scripts heavily
dependent on regular expressions. It would also be overkill for tiny projects, to
which shell or TCL might be better suited.

Like Perl, Python has a well-established development community and a cen-
tral Web site carrying a lot of Python tools and extension modules.

Python implementations are available for Microsoft operating systems and
for the Macintosh. Cross-platform GUI development is possible with either Tk
or other toolkits, wxPython being the most obvious other choice.

4.5 Java

Java is an object-oriented language originally developed at Sun by James Gosling
(it was then known by the name ”Oak”) with the intention of being the succes-
sor to C++. After the Internet exploded in 1993-1994, Java was transformed
into a bytecode-interpreted language and became the focus of a huge adver-
tising campaign by Sun, which marketed it as the new language of choice for
distributed applications.

Java has a stronger and cleaner design than C++. Unlike C++, it does
automatic memory management. Like Python and Perl, Java can be integrated
with C code. It also has excellent documentation.

However Java also has lots of drawbacks including uneven support on differ-
ent Web browser platforms, performance problems, and some painful problems
with some of the standard toolkits (Abstract Window Toolkit in particular).
The language itself is also not without problems, for example class visibility
rules are unnecessarily complex. The multiple inheritance problems of C++ are

7



avoided by introducing the interface facility, which is only slightly less difficult
to understand and use.

Java has already been accepted by academic circles, where it has more or less
replaced Pascal as the preferred tool for teaching the basics of programming to
the next generation of IT specialists. It is also used a lot for ’servlets’ that run
inside web application servers and for in-house development. However, whether
or not Java will be able to replace C++ as a general-purpose programming
language remains unclear.

Java implementations are available for all Unixes and for Microsoft operat-
ing systems and support cross-platform portability of all pure-Java programs
(including GUI capabilities).

4.6 Lisp

Lisp differs from all the languages above in that it is a functional language and
not an imperative one. It is based on the ideas of variable-length lists and trees
as fundamental data types, and the interpretation of code as data and vice-versa.
Lisp was the language where such now commonplace ideas as interpretation,
garbage-collection, operator overloading and so on, were introduced.

Lisp, being a functional language, manages memory automatically, and is
far more elegant and powerful than most conventional programming languages.
By modern standards (heavily influenced by C and C++) it has an odd syntax
however with its use of prefix notation and parenthesis.

The main problem with Lisp is that it is in fact not a single language,
but a family of languages, and thus the Lisp community is deeply fragmented
nowadays. For this reason Lisp was never able to deliver what it promised,
and perhaps the only area where it’s widely used today is for programming the
behavior of the Emacs text editor.

As such, it is very suitable for tasks involving interactively processing a spe-
cial file format or text database. It is also suitable for building applications that
have to be closely integrated with a text editor, or which function primarily as
text browsers with some editing capability. User agents for email and USENET
news fall in this category, and also certain kinds of database front ends.

5 Why are scripting languages important?

The most dominant application programming languages for almost a decade
have been C and C++. However, now they clearly outlived themeselves for
almost all tasks but system programs and time-critical kernels of applications.
Most other tasks (such as application prototyping and gluing together other
applications and tools) are better served by scripting languages.

The central problem of C and C++ is that they require programmers to
handle the memory by hand and not let them leave it to the execution environ-
ment. It is needed to declare variables, explicitly manage pointer-chained lists
and dimension buffers, detect or prevent buffer overruns and to allocate and
deallocate dynamic storage.

This is the cause of an enormous amount of complication and error. Buffer
overruns are a common cause of crashes and security holes. Some bugs are
especially hard-to-find, such as memory leaks.

8



Scripting languages avoid manual memory management by having a memory
manager in their runtime part, typically a program interpreter. Several program
can also share one interpreter, reducing the memory usage.

That’s one side of the story. The other one is that it makes sense to write
today’s programs in several languages, selecting the best tool for each subtask.
For example, the time-critical parts could be done in C, the data access routines
in SQL and the glue that brings it all together, and adds a user interface on
top of that could be written in Tcl or Python. Global complexity of the system
implemented in this style would be lower than if it had been coded as one big
monolith in a general-purpose language.

For example, when building a scientific application, C/C++ programmers
can implement efficient numerical algorithms, while scientists on the same project
can write scripts that test and use those algorithms. The scientist doesn’t have
to learn a low-level programming language, and the C/C++ programmer doesn’t
need to understand the science involved.

Examples of successful use of scripting languages are numerous, but I will
mention just two of them: [1] and [2].

6 The future

In the article [3], a trend is presented, which I wholeheartedly agree with. Ba-
sically, as the decade progresses, we will see a decline in use of statically-typed
languages (the ones that require variables declaration before their usage), such
as C++, Java, and Ada and an increasing use of dynamically typed languages,
such as Python, Ruby, and Perl. It is these languages that will become main-
stream in the coming years. The primary reasons for that is that they have
almost zero compile time (unlike C++ where the compilation sometimes has
to be done overnight on extremely powerful machines), and the fact that type-
safety is no longer needed which greatly simplifies development and testing. So,
it seems to be a good idea to keep an eye on languages like Python and Ruby.
They are likely to become extremely important.

References

[1] Case Study: Python in a Commercial Environment, by Greg
Stein, Microsoft, in Proceedings of the 6th International
Python Conference, http://www.python.org/workshops/1997-
10/proceedings/

[2] Alice Virtual Reality project at Carnegie Mellon University,
http://alice.cs.cmu.edu

[3] Robert Martin. Are scripting languages the wave of the
future? http://www.itworld.com/AppDev/1262/itw-0314-
rcmappdevint/

[4] Ruslan Bogatyrov. The nature and evolution of scripting lan-
guages. http://www.osp.ru/pcworld/2001/11/144.htm

9



[5] Eric Raymond. To C or not to C.
http://tuxedo.org/ esr/writings/taoup/chapter03.html

[6] Prechelt, Lutz; An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl for a search/string-
processing program. http://www.ubka.uni-karlsruhe.de/cgi-
bin/psview?document=ira/2000/5

10


